If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(0)=1/Q^2-9
We move all terms to the left:
(0)-(1/Q^2-9)=0
Domain of the equation: Q^2-9)!=0We add all the numbers together, and all the variables
Q∈R
-(1/Q^2-9)=0
We get rid of parentheses
-1/Q^2+9=0
We multiply all the terms by the denominator
9*Q^2-1=0
We add all the numbers together, and all the variables
9Q^2-1=0
a = 9; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·9·(-1)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*9}=\frac{-6}{18} =-1/3 $$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*9}=\frac{6}{18} =1/3 $
| -1/4x+2=4x-15 | | 5(m+1)+5=-m+13-2+6m | | x^2-7/3x-2=0 | | (x-6)(x+6)-8=1-4x | | 217=-7(1-4x) | | 3x+5x-(2x-6)=13 | | X=5;3x9 | | 6+3x=5x-8 | | 5x+4=3-16 | | 4^p2-8p+16=100 | | 2(x-15)=7(x-6) | | (2x+10)+(2x-10)=180 | | 4x+(-4)+2x+(-7)=12 | | 7x-3=18= | | 4x-4+2x-7=12 | | 8x(8x)-18=7x(7x)-2 | | 0=–16t2–30t+124 | | 3x-1x=12 | | 3/4=u+5 | | -3x+-12-2x=2x+2 | | X+6x-2=-7 | | 5^x=(1/25)^(x-3) | | -2/3+x=1/6 | | 3a=28+9 | | a=-5a+10 | | 5x+23=-9x+5 | | w/6+84=90 | | 2=h-70 | | 4(3x^2-28x+45)=0 | | x+0.7-0.3=0 | | 7x+40+3x+122=180 | | 10/7y=60 |